The State of Cancer: Are we close to a cure?

The State of Cancer: Are we close to a cure

Innovation has been done in cancer treatment to solve a number of issues which is associated with its aggressive treatment accompanied by meticulous studies focused on how to stop this deadly disease which is on its track. Effective therapies are close to find and resolve cancer-related issues.

Currently, the most common types of cancer treatment are immunotherapy, chemotherapy, tumor surgery, radiotherapy and hormonal therapy in case of prostate and breast cancer. Cure in relation to cancer treatment aims to solve the set of issues of patient’s health occupied by unwanted side-effects, tumor recurrence after treatment, surgery, and recurrent cancers often occur after widely utilized treatment.

Immunotherapy

Immunotherapy is the treatment to fight cancer disease. This can be done by stimulating your immune system that does work harder to attack cancer cells by providing man-made immune system proteins to your immune system to work great and smartly to attack cancer cells.

The main types of immunotherapy now being used to treat cancer include:

  • Monoclonal Antibodies: These are man-made versions of immune system proteins. Antibodies can be very useful in treating cancer because they can be designed to attack a very specific part of a cancer cell.
  • Immune checkpoint inhibitors: These drugs basically take the ‘brakes’ off the immune system, which helps it recognize and attack cancer cells.
  • Cancer Vaccines: Vaccines are substances put into the body to start an immune response against certain diseases. We usually think of them as being given to healthy people to help prevent infections. But some vaccines can help prevent or treat cancer.

Types of cancer vaccines

Many different types of vaccines are now being studied to treat a variety of cancers.

Tumor cell vaccines: These vaccines are made from actual cancer cells that have been removed from the patient during surgery. The cells are altered (and killed) in the lab to make them more likely to be attacked by the immune system and then injected back into the patient. The patient’s immune system then attacks these cells and any similar cells still in the body.

Most tumor cell vaccines are autologous, meaning the vaccine is made from killed tumor cells taken from the same person in whom they will later be used. Other vaccines are allogeneic, meaning the cells for the vaccine come from someone other than the patient being treated. Allogeneic vaccines are easier to make than autologous vaccines, but it’s not yet clear if one type works better than the other.

Antigen vaccines: These vaccines boost the immune system by using only one antigen (or a few), rather than whole tumor cells. The antigens are usually proteins or pieces of proteins called peptides.Antigen vaccines can be specific for a certain type of cancer, but they are not made for a specific patient like autologous tumor cell vaccines are.

Dendritic cell vaccines: These vaccines have shown the most success so far in treating cancer. Sipuleucel-T (Provenge), which is approved for the treatment of prostate cancer, is an example of a dendritic cell vaccine. Dendritic cells are special immune cells in the body that help the immune system recognize cancer cells. They break down cancer cells into smaller pieces (including antigens), and then hold out these antigens so other immune cells called T cells can see them. The T cells then start an immune reaction against any cells in the body that contain these antigens.

Dendritic cell vaccines are made from the person in whom they will be used. The process used to create this type of vaccine (known as an autologous vaccine) is complex and expensive. Doctors remove some immune cells from the patient’s blood and expose them in the lab to cancer cells or cancer antigens, as well as to other chemicals that turn the immune cells into dendritic cells and help them grow. The dendritic cells are then injected back into the patient, where they should cause an immune response to cancer cells in the body.

Vector-based vaccines: These vaccines use special delivery systems (called vectors) to make them more effective. They aren’t really a separate category of vaccine; for example, there are vector-based antigen vaccines.Vectors are special viruses, bacteria, yeast cells, or other structures that can be used to get antigens into the body. The vectors are often germs that have been altered to make sure they can no longer cause disease.

Vectors can be helpful in making vaccines for a number of reasons. First, they can be used to deliver more than one cancer antigen at a time, which might make the body’s immune system more likely to mount a response. Second, vectors such as viruses and bacteria might trigger their own immune responses from the body, which could help make the overall immune response even stronger. Finally, these vaccines might be easier and less expensive to make than some other vaccines.

One thought on “The State of Cancer: Are we close to a cure?

Leave a Reply

Your email address will not be published. Required fields are marked *